

Supplement Fig. 2: Schematic representation of the mitochondrial submodel of the BRAINSIGNALS model. Highlighted in red are the aspects of this submodel that we investigated for the purpose of this paper.

The Cu_A centre is reduced (${}^{\prime}r^{\prime}$) by some reducing substrate, termed R. It in turn passes its electrons onto cyta₃. Finally cyta₃ is oxidised (${}^{\prime}o^{\prime}$) by oxygen. All processes can in general produce a proton motive force, Δp , by the movement of electrons and/or protons across the inner mitochondrial membrane. As a result, they are also inhibited by Δp . The rates of the three processes – initial reduction of Cu_A , electron transfer to cyta₃ and final oxidation of cyta₃, are termed f_1 , f_2 and f_3 , respectively.

The rate of Cu_A reduction (f_1) is dependent on the NAD/NADH ratio (via the effect of the model parameter D_NADH on R) and the proton motive force (via the model parameter ck_1 that determines the sensitivity of f_1 to changes in Δp). Incorporating a specific change in D_NADH during functional activation can therefore affect the size and sign of the $\Delta[oxCCO]$ signal. Changing the parameter ck_1 will affect the extent to which the Cu_A reduction rate responds to the change in Δp induced by the change in demand during functional activation. Again, this can affect the size and sign of the $\Delta[oxCCO]$ signal.